低温催化氧化VOCs研究分析
挥发性有机化合物(VOCs)从各种工业和自然资源排放到环境中,形成的污染是所有人共同关心的问题。控制挥发性有机物污染物的最佳方法是在排放前将其清除。面对如此严峻的形势,近年来出台了越来越严格的规章制度,相应地需要更有效的VOCs去除技术。
1催化应用
催化反应具有明显的低温活性、选择性和高效性等优点,在工业污染控制中得到了广泛的应用。
1.1再生催化氧化
再生催化氧化(RCO)是一种与再生热氧化(RTO)相似的可以去除VOCs的最节能技术之一。它们都使用两个或多个含有陶瓷填料的床作为传热介质。典型的两床RCO主要由陶瓷层、催化剂层、加热器组成,分别起到蓄热、反应介质和供热的作用。与实验室规模相比,工程应用更注重成本与性能的平衡,故在选择高效催化剂时,更注重催化剂的起燃温度和气体空速,这决定了能耗水平和设备尺寸。
1.2光催化氧化
与热催化不同,光催化可在室温下使用紫外线或可见光进行,故PCO的结构比RCO简单。光催化在室温下对各种VOCs具有广泛的活性,但停留时间较长,氧化能力和适应性有限。工业活动产生的VOCs排放比室内环境更为复杂,因此发展最新的光催化技术成为必要。
1.3催化混合处理
随着工业工艺的不断发展和优化,大部分VOCs污染源倾向于排放低浓度VOCs。在这种情况下,传统技术是不合理的,且每个工业污染源中存在多种VOCs。因此,所涉及的VOCs种类会相互竞争催化氧化;进而不完全氧化导致去除率低和副产物。
1.3.1吸附浓缩催化氧化
吸附浓缩催化技术是一种良好的低浓度VOCs污染解决方案。通过连续吸附和解吸,得到较高浓度的VOCs,使后处理更节能。
混合吸附浓缩催化技术具有吸附和氧化的优点,且避免了饱和吸附剂的频繁处置和单一技术无法解决的高能耗。
1.3.2 臭氧氧化催化
由于VOCS污染物在气体环境中稳定性差,单次臭氧化很难使其完全氧化为CO2和H2O。使用臭氧作为预处理可与普通催化技术产生协同效应。在工程中,臭氧氧化过程中产生有害副产物尤为令人关注,研究制备了钴锰复合氧化物催化剂,在室温下于O3去除甲醛,在微量O3浓度下达到80.2%的甲醛去除效率。这种臭氧氧化与催化或光催化氧化结合的混合处理比单体处理更有效、更环保。
扫二维码用手机看
留言咨询
关注我们
版权所有 © 北京中航天业科技有限公司 京ICP备16069360号-2